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Abstract
We consider the dynamics of a quantum particle in a one-dimensional periodic
potential (lattice) under the action of a static and time-periodic field. The
analysis is based on a nearest-neighbour tight-binding model which allows
a convenient closed form description of the transport properties in terms of
generalized Bessel functions. The case of bichromatic driving is analysed in
detail and the intricate transport and localization phenomena depending on the
communicability of the two excitation frequencies and the Bloch frequency are
discussed. The case of polychromatic driving is also discussed, in particular
for flipped static fields, i.e. rectangular pulses, which can support an almost
dispersionless transport with a velocity independent of the field amplitude.

PACS numbers: 03.65.−w, 78.67.Pt

1. Introduction

Quantum transport properties in periodic structures (lattices) are highly non-intuitive, in
particular in view of their localization properties (see, e.g., [1]). Classically, a particle in
a periodic potential is localized in a single well at low energies, whereas a quantum system
shows the well-known Bloch band/gap structure with transporting bands. If a constant field
F0 is added, the quantum states in a band with width G become localized to an interval
G/F0, contrary to our intuition. In this region, the wavefunctions show the celebrated Bloch
oscillations [2] with the Bloch frequency ωB = F0d/h̄, where d is the period of the potential,
and there is no directed transport. This localization is, of course, approximate because of
the decay to infinity by Zener tunnelling [3], an effect of longer timescales at least for weak
fields. An additional time-periodic driving F(t) re-introduces the quantum transport which
can be suppressed again for special choice of the parameters. In the following we will neglect
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the decay and confine ourselves to the minimal model system, the single-band tight-binding
Hamiltonian with nearest-neighbour coupling,

Ĥ = −G

4

+∞∑
�=−∞

(|�〉〈� + 1| + |� + 1〉〈�|) + dF

+∞∑
�=−∞

�|�〉〈�|, (1)

where |�〉 are the Wannier states which are exponentially localized in the �th potential well
and G is the width of the Bloch band for F = 0. Let us recall that for a static field F = F0 the
extension of the Bloch oscillation is approximately

L = G/F0, (2)

as easily deduced from the tilted band picture.
For the best understood case of a monochromatic driving F(t) = F0 − F1 cos(ω1t)

where the driving frequency is in resonance with the Bloch frequency, ωB = nω1, n =
1, 2, . . . , a suppression of transport, denoted as a dynamic localization, is found if the condition

Jn(dF1/h̄ω1) = 0 (3)

is satisfied [1, 4, 5], where Jn(z) is the (ordinary) Bessel function. Otherwise transport with a
velocity proportional to Jn(dF1/h̄ω1) is found.

For the general case of a bi- or polychromatic periodic driving the particle dynamics is
found to be quite complicated and unexpected effects have been observed. These effects may
be used to manipulate the quantum dynamics. The aim of the present study is to investigate
the transport and localization properties for a bi-chromatic driving extending previous studies
by Liu and Zhu [6], Yashima et al [7] and Suqing et al [8]. In addition, we will also consider
the even less explored realm of polychromatic driving.

We base our analysis on a Lie-algebraic approach introduced by one of the authors [9]
(see also [10] for an extension to two space dimensions). Following [9], we introduce the
abbreviations ft = dF(t)/h̄ and g = −G/4h̄, which may also depend on time in general. Then
the Hamiltonian can be conveniently expressed in terms of the Hermitian position operator
N̂ = ∑

� �|�〉〈�| and the unitary shift operator K̂ = ∑
� |�〉〈� + 1|:

1

h̄
Ĥ = g(K̂ + K̂†) + ft N̂ . (4)

The dynamics of expectation values depends on the initial state

|ψ(t = 0)〉 =
∑

�

c�|�〉 (5)

characterized by the coherence parameters

K =
∑

�

c∗
�−1c� = |K| eiκ (6)

L =
∑

�

c∗
�−2c� = |L| eiν (7)

J =
∑

�

(2� − 1)c∗
�−1c� = |J | eiµ. (8)

In the following we will assume a symmetric normalized Gaussian state c� ∼ e−�2/4σ 2
which

allows for a broad initial distribution (σ � 1) an approximate evaluation of the coherence
parameters by replacing sums by integrals:

K ≈ e−1/8σ 2
, L ≈ e−1/2σ 2

, J ≈ 0. (9)

The time evolution operator can be written as a product of exponentials [9],
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Û (t) = e−iηt N̂ e−iχt K̂ e−iχ∗
t K̂†

, (10)

with

ηt =
∫ t

0
fτ dτ and χt = g

∫ t

0
e−iητ dτ = |χt | e−iφt . (11)

An advantage of the product form (10) is the simple evaluation of matrix elements and
expectation values, as for instance the mean value of the position N̂ ,

〈N̂〉t = 〈N̂〉0 + i(χt 〈K̂〉0 − χ∗
t 〈K̂†〉0) = 〈N̂〉0 + 2|K||χt | sin(φt − κ) (12)

with the coherence parameter K = |K| eiκ specified in (6). For a symmetric initial state we
have κ = 0 and an elementary calculation provides an upper bound of the mean transport
velocity

vtrans = 〈N̂〉t − 〈N̂〉0

t
� 2|gK|. (13)

The time evolution of the width of the wave packet is given by [9]

�2
N(t) = �2

N(0) + 2|χt |2{1 − |L| cos(2φt − ν) − 2|K|2 sin2(φt − κ)}
+ 2|χt |{2〈N〉0|K| sin(2φt − κ) + |J | sin2(φt − µ)}. (14)

which simplifies to

�2
N(t) = �2

N(0) + 2|χt |2{1 − |L| cos(2φt) − 2|K|2 sin2(φt )} (15)

for a real symmetric Gaussian initial wave packet. With |K| = e−1/8σ 2
and |L| = e−1/2σ 2

the
dispersion depends on σ as �2

N(t) − �2
N(0) ∼ 1/σ 2 for large values of σ . This leading order

term can, however, be suppressed at times t for which the function χt is purely imaginary, i.e.
cos(2φt) = −1 and sin2(φt ) = 1. One can easily show that this implies

�2
N(t) − �2

N(0) = |χt |2 1

4σ 4
+ O(σ−6) (16)

and the dispersion is strongly reduced at these times. This condition will be satisfied for the
example of the shuttling transport discussed below in section 5.1.

2. Time periodic driving

In the following, we will assume a time-independent nearest-neighbour coupling g > 0 and a
periodic driving term

ft = f0 + f̃ t , f̃ t+T = f̃ t , (17)

where f0 � 0 is constant and f̃ t vanishes on the average. This implies a Bloch frequency
ωB = f0.

It can easily be shown by Fourier expansion that both functions in (11) can be separated
into a linear growing and a periodically oscillating part (cf [8, 9]):

ηt = f0t + η̃t , χt = γ t/2 + χ̃t (18)

where γ is different from zero if the driving period T is in resonance with the Bloch period
TB = 2π/ωB,

T = nTB, n ∈ N. (19)

The coefficient γ controlling the transport properties is given by

γ = 2χT

T
= 2g

T

∫ T

0
e−inωt−iη̃t dt (20)
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with ω = 2π/T . At time T the time evolution operator (10) commutes with K̂ and the
simultaneous eigenstates of K̂ and Û (T ) have eigenvalues eiκ and e−iεT , respectively, where
the quasienergy ε depends on the quasimomentum κ as

ε(κ) = |γ | cos(κ + arg(γ )), (21)

denoted as the (quasi)dispersion relation. It may be of interest to realize that the possible
values of γ are bounded by the width of the dispersion relation for the non-biased system

|γ | � 2|g|, (22)

a well-known property of Fourier integrals.
The mean value of the wave packet moves with an average velocity,

Vtrans = 〈N̂〉T d

T
= vtrans d

vtrans = i

T
(χT 〈K̂〉0 − χ∗

T 〈K̂†〉0) = −|γ ||K| sin(κ + arg(γ )),

(23)

where the initial condition is written as 〈K̂〉0 = |K| eiκ . As expected, this mean velocity can
also be expressed as vtrans = dε/dκ|κ . Note that vtrans is bounded from above for |K| → 1:

vtrans � |γ | � 2|g| or Vtrans � 2d|g|. (24)

If the system parameters are adjusted such that γ = 0, the band (21) collapses and the
non-oscillatory term in χT vanishes with the consequence that there is no transport, i.e. we
have dynamic localization.

3. Bichromatic driving

Let us consider a combined dc- and bichromatic ac-driving,

ft = f0 − f1 cos(ω1t) − f2 cos(ω2t + δ), (25)

with a phase shift δ. Note that this function is aperiodic for incommensurable frequencies
ω1 and ω2, which is not necessarily true for a sum of two arbitrary periodic functions with
incommensurable periods; an example can be found in [11]. For commensurable frequencies
ft is periodic. The dc-bichromatic case has been investigated before. First results for a
biased semiconductor superlattice [6] and more recent studies [7] showed localization and
delocalization depending on the system parameters. In [8], these transport properties were
shown to depend sensitively on the number theoretic nature of the frequency ratios. Here we
will extend this analysis.

With f0 = ωB and u = f1/ω1, v = f2/ω2, we obtain

ηt =
∫ t

0
fτ dτ = ωBt − u sin(ω1t) − v sin(ω2t + δ). (26)

The function χt in equation (11) which determines the dynamics can be expressed in terms of
Bessel functions using the generating function

eix sin z =
∞∑

µ=−∞
Jµ (x) eiµz. (27)

With the abbreviation ωµ,ν = ωB − µω1 − νω2 this yields

χt =
∫ t

0
g e−iητ dτ = g

∫ t

0
exp(−i(ωBt − u sin(ω1t) − v sin(ω2t + δ))) dτ

= g

∞∑
µ=−∞

∞∑
ν=−∞

Jµ(u)Jν(v) eiνδ

∫ t

0
dτ e−iωµ,ντ . (28)
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The remaining integration is elementary; however, one has to distinguish the cases of resonant
and non-resonant driving.

In the resonant case, we have

ωB = µω1 + νω2 (29)

for certain integers µ, ν. Let us denote the set of all indices µ, ν satisfying (29) by B. We
then have

χt = γ t/2 + 2g
∑

(µ,ν)/∈B

Jµ(u)Jν(v) eiνδ 1

ωµ,ν

e−iωµ,ν t/2 sin
ωµ,νt

2
, (30)

with

γ = 2χT

T
= 2g

∑
(µ,ν)∈B

Jµ(u)Jν(v) eiνδ. (31)

If B 
= ∅ the first term in (30) is growing linearly in time and thus dominating the long time
dynamics. In this case we can observe transport.

It is instructive to have a brief look at the monochromatic driving first. This case is
recovered for v = 0, observing Jν(0) = δν,0 and hence

χt = γ t/2 + 2g
∑
µ/∈B

Jµ(u)
1

ωµ

e−iωµt/2 sin
ωµt

2
, (32)

with ωµ = ωB − µω1 (cf [1, 9]). If the resonance condition ωB = µω1 is satisfied, we have

γ = 2gJµ(u) (33)

and therefore an average transport with velocity proportional to the Bessel function Jµ(u) =
Jµ(f1/ω1). This linear transport is superimposed by an oscillating part, which is periodic with
the Bloch period TB for resonant driving. By adjusting the value of the driving amplitude f1

one can change the direction of the transport or bring it to a standstill for Jµ(f1/ω1) = 0, the
dynamic localization.

For bichromatic driving, the situation is more complicated and we distinguish two basic
cases [8]:

Incommensurable driving frequencies ω1 and ω2. If the ratio ω2/ω1 is irrational, the resonance
condition (29) leads to ωB/ω1 = µ+νω2/ω1. This can only be satisfied for a special irrational
value of the ratio ωB/ω1, for example by an appropriate dc-field F0. These cases are of
measure zero and typically there is no transport. If, however, the system parameters are tuned
to special values satisfying the resonance condition (29), then there exists only a single pair
(µ, ν) ∈ B as can be easily checked and we have transport with velocity

γ = 2gJµ(u)Jν(v) eiνδ. (34)

Commensurable driving frequencies ω1 and ω2. If ω2/ω1 = q/p for integers q and p with no
common divisor and if the resonance condition (29) is satisfied for a particular pair (M,N)

one can find all solutions by (µ, ν) = (M − qk,N + pk) with k ∈ Z, i.e.

B = {(M − qk,N + pk), k ∈ Z}. (35)

This can be shown as follows: the resonance condition (29) can be rewritten as the Diophantine
equation

n = pµ + qν with n = pωB/ω1 ∈ Z. (36)

A solution (µ, ν) = (M,N) of this equation always exists if p and q have no common divisor
and can be found systematically by, e.g., the Euclid algorithm [12]. We therefore have an
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Table 1. Transport properties for a bichromatically driven biased lattice with Bloch frequency ωB.

ωB/ω1 irrational ωB/ω1 rational

ω2/ω1 irrational localization (transport possible) localization
ω2/ω1 rational localization transport (localization possible)

infinite number of solutions. Note that the choice of the special solution (M,N) is arbitrary.
For rational frequency ratios function (31) is determined by three integers, p, q, n, and we can
express it in the convenient form

γ = 2g eiNδJ p,q
n (u, v; eipδ) (37)

in terms of the two-dimensional, one-parameter Bessel function

Jp,q
n (u, v; z) =

∞∑
k=−∞

JM−qk(u)JN+pk(v)zk (38)

where (M,N) is an arbitrary solution of the Diophantine equation (36). An introduction into
the properties of two-dimensional Bessel functions can be found in [13].

The two-dimensional generalized Bessel functions (38) satisfy the inequality∣∣Jp,q
n (u, v; z)

∣∣ � 1/
√

2 for n 
= 0. This implies that the maximum transport velocity

vtrans,max = |γ | = 2|g|∣∣Jp,q
n (u, v; eipδ)

∣∣ (39)

is bounded as |γ | �
√

2g < 2g.
For commensurable driving frequencies ω1 and ω2, ω2/ω1 = q/p, and driving amplitudes

f1 f2, we have the following behaviour:

If the ratio ωB/ω1 is irrational, condition (29) cannot be satisfied and we have no
transport.
If ωB/ω1 is rational with n = pωB/ω1, we typically have transport with transport velocity
proportional to J

p,q
n (f1/ω1, f2/ω2). This transport can, however, be stopped for special

values of the system parameters and dynamic localization is observed. It should be noted
that this case is always met for pure ac-driving (ωB = 0).

The transport and localization properties of a bichromatically driven system are
summarized in table 1. The following section considers some exemplary cases in more
detail.

4. Case studies for resonant driving

In this section, we will discuss the transport and localization properties in some more detail
for the most interesting case of resonant driving ωB = µω1 +νω2. The driving frequencies are
assumed to be commensurable, ω2/ω1 = p/q with coprime integers p and q, where, w.l.o.g.,
we can choose p as the smaller one of these numbers. Let us recall that the ac-driving period
T is equal to an integer number of Bloch periods, T = nTB, where n can be expressed as
n = pM +qN with integer (M,N) ∈ B. We will also assume that the force term is symmetric
in time, f (−t) = f (t), i.e. the phase shift δ in (25) is equal to zero, with the consequence that
the two-dimensional one-parameter Bessel functions reduce to simple two-dimensional ones
[13]. The transport properties of the system are then determined by the parameter

γ = 2gJp,q
n (u, v), (40)
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Figure 1. Transport coefficient γ as a function of the parameters u = f1/ω1 and v = f2/ω2 for a
bichromatic driving with ω2 = 2ω1 at resonance with the Bloch frequency ωB, i.e. ω1 +ω2 = nωB.
Shown are examples for n = 1 (left and middle) and n = 29 (right), where the figure in the middle
shows γ for a fixed parameter v = 1 and n = 1.
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Figure 2. Left: dynamics of a Gaussian wave packet with initial momentum κ0 = −π/2 for a
bichromatic driving with amplitudes v = 1 and u = −4.68 in a greyscale plot. Right: position
expectation value 〈N̂(t)〉 for κ0 = −π/2 (solid line) and κ0 = 0 (dash-dotted line) in comparison
with the transport coefficient γ t (dashed line).

with variables u = f1/ω1 and v = f2/ω2. In this case γ is real and its sign, the sign of the
Bessel function, directly gives the direction of transport. Here we are in particular interested
in the parameter values leading to dynamic localization. These values are given by the zeros
of J

p,q
n (u, v), i.e., the nodal lines of the two-dimensional Bessel function.
In previous studies the special case of the bichromatic driving with ω2 = 2ω1 attracted

most attention and we will start with this special case in the following. For simplicity
we fix g = 1 and ω1 = 1. The resonance condition for the static field (36) then reads
n = ωB/ω1 = f0/ω1. In our first examples we fix the amplitude of one driving as f2 = ω2,
i.e v = 1, and consider the case ωB = ω1, i.e. n = 1. The transport coefficient given by
γ = 2J

1,2
1 (u, v) is shown in figure 1 in dependence of u and v (left-hand side) and for v = 1

fixed (middle). Numerically we find a global maximum at u = −4.68 and a nodal line at
u = −6.49 for v = 1.

We consider the time evolution of a broad Gaussian wave packet

|ψ(t = 0)〉 ∼
∑

�

exp(−�2/(2σ)2 + iκ0�)|�〉 (41)

with σ = 10. For such a broad Gaussian wave packet the coherence parameter K is given by
|K| ≈ 1 and κ ≈ κ0. The left-hand side of figure 2 shows the dynamics of such a wave packet
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Figure 3. Left: dynamical localization. For u = −6.49 any wave packet is localized around
n = 0 regardless of the initial momentum. The evolution of the position expectation 〈N̂(t)〉 is
shown for κ0 = −π/2 (solid line) and κ0 = 0 (dash-dotted line). Right: dispersion of a Gaussian
wave packet with κ0 = −π/2 for u = −4.68 (transport, solid line) and u = −6.49 (dynamical
localization, dashed).

for κ0 = −π/2, which is rapidly transported. The right-hand side shows the expectation values
〈N̂(t)〉 of the position for κ0 = 0 and κ0 = −π/2. The transport coefficient γ t is shown as
a dashed line for comparison. The sine in equation (12) is approximately 1 for κ0 = −π/2
such that the fastest possible transport is observed which is given by γ t . For κ0 = 0 the
sine in equation (12) is approximately zero so that the wave packet stays at rest. However,
this localization is only due to the special initial state chosen in this example. Depending on
the value of κ0, the wave packet will be transported with a velocity in the interval [−γ, γ ].
Localization, i.e. vtrans = 0, is only found for κ0 = 0.

The situation is different for u = −6.49, for which J
1,2
1 (u, v) = 0, i.e., dynamical

localization is found. Now every wave packet will be localized regardless of its initial
momentum κ . This is illustrated in figure 3 on the left where the position expectation value
〈N̂(t)〉 is shown for κ0 = 0 and κ0 = −π/2. The right-hand side of figure 3 shows the
time evolution of the width of the wave packet with κ0 = 0 for u = −4.68 (transport) and
u = −6.49 (dynamical localization). As the dispersion is also governed by the function |χt |,
no broadening is observed in the case of dynamical localization.

Next we consider an example, where the field amplitudes are large in comparison to the
driving frequencies. Then n = f0/ω � 1 as well as u, v � 1 and asymptotic approximations
for the relevant Bessel functions are available [13]. In fact we consider a driving amplitude
v = −20 and a static field strength with n = 29. Dynamical localization is observed if the
driving amplitudes u is chosen such that J

1,2
29 (u, v) = 0. Explicit estimates for these values

are derived from the asymptotic approximations of this Bessel function. For n < 2|v|, one
finds

u

√
1

2
− n

4v
=

{
(2j + 1)

π

2
n even

jπ n odd
, j = 0,±1,±2, . . . (42)

and for n > 2|v|, with v < 0,

u

√
1

2
− n

4v
= (n + 2j)

π

2
, j = 0,±1,±2, . . . . (43)

The smallest non-zero values of u for which dynamical localization is predicted by these
formulae are u1 = 3.38 and u2 = 6.77, while we find u1 = 3.37 and u2 = 6.75 numerically.
Figure 4 shows the time evolution of the position expectation value for u1 = 3.37 (left) and
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Figure 4. Dynamical Localization for n = 29, v = −20 and u = 3.37 (left) and transport for
u = 5 (right). The mean transport is given by γ t , which is plotted as dashed line for comparison.

for u3 = 5 (right), each for κ0 = −π/2. Clearly the wave packet stays at rest and does not
show any systematic dispersion for u1 = 3.37. Transport is found for u3 = 5, where the mean
transport is given by γ t . However, transport is much slower than for n = 1, as illustrated in
figure 2.

Let us emphasize that the algebraic method used in the present paper is not restricted to
any particular initial quantum state. This is of particular interest for the study of transport
phenomena of extended quantum states. Numerical studies become extremely difficult in this
case, since the construction of transparent boundary conditions mostly relies on the localization
of the initial wavefunction (see [14] for a recent review). Using the Lie-algebraic approach, the
dynamics of the expectation values and thus the transport velocity (13) depends on the initial
state only via the coherence parameters (6). For example, a plane wave with quasi-momentum
κ0 yields the parameters |L| = |K| = 1, κ = κ0, ν = 2κ0 and J = 0. The width (14) remains
exactly constant and the transport velocity is given by

vtrans = 2 sin(φt − κ0)|χt |/t. (44)

5. Polychromatic driving

In view of the rich transport and localization behaviour for bichromatic driving, one may
expect additional surprising effects for general time periodic, however polychromatic driving.
This is indeed the case, however, only few such studies have been reported up to now in
particular for a periodic rectangular force [2, 15]. This case allowing a closed form solution,
is discussed in the following section. The general case is briefly outlined in section 5.2.

5.1. Flipped fields and shuttling transport

Let us consider a rectangular force term

f (t) =
{
f1 0 � t < aT

f2 aT � t < T
(45)

with 0 < a < 1 and f (t +T ) = f (t). For this flipped static force excitation the time-averaged
field is

f0 = af1 + bf2, b = 1 − a, (46)
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where we can assume f1 > 0. For the choice f2 = −f1, the force (45) reduces to the case
studied in [15] (note that there the time scale is shifted). The even more specialized case
a = 1/2 with period T = 2π/f1, the Bloch period for a constant field f1, is discussed in [16]
and briefly at the end of [2] (note that in this case we have f0 = 0).

For the flipped field excitation (45), the functions ηt and χt in (11) can be calculated by
elementary integration:

ηt =
{
f1t 0 � t � aT

f1aT + f2(t − aT ) aT � t � T
(47)

ηt+T = ηt + ηT , ηT = f1aT + f2bT = f0T . (48)

χt =




g

if1
(1 − e−if1t ) 0 � t � aT

g

if1
(1 − e−if1aT ) +

g e−if1aT

if2
(1 − e−if2(t−aT )) aT � t � T

(49)

and

χt+T = e−iηT χt + χT (50)

χT = g

if1
(1 − e−if1aT ) +

g

if2
(e−if1aT − e−if0T ). (51)

With f0 = ωB and ω = 2π/T , we see that for the case of resonant driving, ωB = nω, we
have f0T = 2πn, χkT = kχT for k = 1, 2, . . . . This implies an overall transport of the
expectation value 〈N̂〉t with a velocity determined by

γ = 2χT

T
= 4g

T

(
1

f1
− 1

f2

)
e−i af1T

2 sin
af1T

2
. (52)

For af1T = 2µπ with µ = 1, 2, . . . , we have γ = 0, i.e. dynamical localization. The
maximum transport velocity

vtrans = |γ | =
∣∣∣∣4g

T

(
1

f1
− 1

f2

)
sin

af1T

2

∣∣∣∣ � 2|g| (53)

is obtained when the phase is adjusted as κd + arg(γ ) = κd − af1T/2 = (2µ + 1)π/2
according to (23).

These findings can be easily explained in terms of Bloch oscillations for the time intervals
with constant force f1 and f2 with Bloch periods TB1 = 2π/f1 and TB2 = 2π/|f2|, respectively.
If af1T = 2µπ with µ ∈ N, we have b|f2|T = 2νπ with ν ∈ N for resonant driving,
f0 = af1T + bf2T = 2nπ . The wave packet carries out µ full Bloch oscillations in the first
time interval and ν in the second and there is no directed transport. For af1T = (2µ + 1)π ,
however, we also have a|f2|T = (2ν + 1)π (µ, ν ∈ N) and therefore a motion over a distance
L1 = G/F1 = 4gd/f1 in the first time interval aT and L2 = G/F2 = 4gd/f2 in the second
time interval bT , however in the opposite direction. The average transport velocity is

Vtrans = L1 + L2

T
= 4gd

T

∣∣∣∣ 1

f1
− 1

f2

∣∣∣∣ (54)

in agreement with (53).
Let us briefly consider the most simple case where a static field f with Bloch period TB =

2π/f is flipped after each half of a Bloch period, i.e. we have f1 = −f2 = f, a = 1/2, f0 = 0
and a period T = TB. This yields a transport velocity

vtrans = 4|g|
π

, (55)
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Figure 5. Numerical time propagation of a Gaussian wave packet in a cos-potential for a flipped
field f1 = −f2 = 0.0003 and a = 0.5.
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Figure 6. Numerical time propagation of a Gaussian wave packet for a flipped field f1 = −f2 =
0.0003 and a = 1/4.

which is smaller than the maximum possible value 2|g| by a factor of 2/π . It is remarkable
that the velocity of this field induced transport is independent of the field amplitude f .

The analysis above is based on a tight-binding model, Numerically exact wave packet
propagation can be used to check the validity of these predictions for realistic potentials. As
an illustrating example, figures 5 and 6 show the propagation of an initially broad Gaussian
wave packet in position space,

ψ(x, t = 0) ∼ exp(−x2/(2s)2), s = 15π (56)

(we use units with h̄ = 1) in a potential V (x) = (1/8) cos x for a flipped F(t) field with
|F | = 0.0003 and f1 = −f2. In the first case shown in figure 5 the static force is flipped after
each half-period of the Bloch time (a = 1/2), i.e. the average field f0 vanishes (see also [2] for
a similar calculation). One observes that the wave packet moves almost dispersionless with a
velocity Vtrans = −78d/TB , which agrees with the prediction of the tight-binding model for
the actual bandwidth G = 0.0741. Note that the direction of transport is determined by the
direction of the Bloch oscillation at time t = 0, i.e. in the negative direction in the present case
with initially positive f . In order to demonstrate this clearly, figure 6 shows the same system
as before, however for a doubled excitation period T and a = 1/4, i.e. a negative average value
of f0. The wave packet moves in the same direction as before, i.e. opposite to the average
negative gradient of the potential. Note that the transport velocity is reduced by a factor of 2,
because of the increased value of T. This behaviour can be easily understood by observing that
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in the second half of the excitation period, the system undergoes a full Bloch oscillation
without a net transport.

5.2. General polychromatic driving

The two simple cases analysed above, mono- or bichromatic fields or binary-flipped
piecewise constant fields allow a quite extensive analytical analysis. Let us finally briefly
address a general polychromatic driving field following [9]. For simplicity we will assume
f (t) = f (t + T ) to be symmetric in time, f (−t) = f (t), with Fourier expansion

ft = f0 −
∞∑

m=1

fm cos(mωt), ω = 2π/T . (57)

Let us recall that in the units chosen here the dc-component is equal to the Bloch frequency
f0 = ωB, and the function ηt in equation (11) is

ηt = ωBt −
∞∑

m=1

βm sin(mωt), βm = fm/mω. (58)

This yields

χt = g

∫ t

0
e−iητ dτ = g

∫ t

0
exp

(
−iωBτ + i

∞∑
m=1

βm sin(mωτ)

)
dτ

= g

+∞∑
ν=−∞

Jν({βm})
∫ t

0
e−i(ωB−νω)τ dτ (59)

in terms of the infinite-variable Bessel functions [17, 18]

exp

(
i

∞∑
m=1

βm sin mu

)
=

+∞∑
ν=−∞

Jν({βm}) e−iνu. (60)

For resonant driving, ωB = nω, the final result is

χt = gJn({βm})t + 2g
∑
ν 
=n

Jν({βm}) 1

ων

e−iωνt/2 sin
ωνt

2
, (61)

where we have set ων = ωB − νω. In the non-resonant case the first term is absent and the
sum extends over all integers. Specializing again to mono- or bichromatic driving this result
reduces to those derived in section 3.

For resonant driving, ωB = nω, we have ων = (n − ν)ω and the oscillating part in (61)
vanishes at times which are integer multiples of the driving period T. The average transport
velocity is then given by

vtrans = |γ | = 2|χT |
T

= |gJn({βm})|. (62)

Dynamical localization effects will be observed if the system parameters are tuned to a zero
of the infinite-order Bessel function Jn({βm}).

The closed form result for the transport velocity in (62) is a generalization of the formula
(39) derived for bichromatic driving. For the very special case of a flipped rectangular field,
the closed form solution presented in section 5.1 is, of course, superior to the general solution.
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6. Concluding remarks

We have shown that the dynamics of a quantum particle in a one-dimensional periodic potential
(lattice) under the action of a static and time-periodic field shows quite intricate transport and
localization phenomena, even in the relatively simple case of bichromatic driving which
depend sensitively on the communicability relations between the two excitation frequencies
and the Bloch frequency. The theoretical analysis based on a nearest-neighbour tight-binding
model allows a convenient closed form description of the transport properties in terms of
generalized Bessel functions. In particular, conditions for the system parameters leading to
localization are derived.

The case of polychromatic driving is also discussed, in particular for flipped static fields,
i.e. rectangular pulses, which can support an almost dispersionless transport with a velocity
independent of the field amplitude.

Such fields, which can be quite easily realized experimentally, offer interesting
possibilities for the control of quantum transport and the manipulation of wave packets as
for instance cold atoms in optical lattices.

Finally it should be noted that it offers also some advantage to modify the spatial period
of the lattice. For example, a double periodic lattice, a superposition of two periodic structures
with period d and 2d has been studied recently [19, 20]. It allows controlled Landau–Zener
tunnelling which can also be employed for a manipulation of matter waves.
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